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The problem of the universe is essentially an application of the law of
gravitation to a region of extremely low density. The mean density of
matter up to a distance of some ten millions of light years from us is of
the order of 10-30 gr./cm.3; if all the atoms of the stars were equally
distributed through space there would be about one atom per cubic yard,
or the total energy would be that of an equilibrium radiation at the tem-
perature of liquid hydrogen. The theory of relativity points out the
possibility of a modification of the law of gravitation under such extreme
conditions. It suggests that, when we identify gravitational mass and
energy, we have to introduce a constant. Everything happens as though
the energy in zacuo would be different from zero. In order that absolute
motion, i.e., motion relative to vacuum, may not be detected, we must
associate a pressure p = - pc2 to the density of energy pC2 of vacuum.
This is essentially the meaning of the cosmical constant X which corre-
sponds to a negative density of vacuum po according to

'XC2
Po = -G 10-27 gr./cm.3 (1)

47rG

Let us consider the motion of matter symmetrically distributed round
some fixed point 0. The classical equation of motion under the action of
the modified gravitational field is

2Gm + (2)

where m is the mass inside the sphere of radius r and center 0. The
condition that the system expands, remaining similar to itself, is that h
and m have to be proportional, respectively, to r2 and r3. This classical
motion is a good approximation of the relativistic equations when r is
small enough. When r is great, some geometrical modifications become
important and the classical model must be interpreted as a map in euclidean
space. This map is like an orthogonal projection: lengths perpendicular
to the radius vector are not altered, but along the radius vector they are
represented at a scale

1- h/c2 (3)

and the scale vanishes at the boundary of the map where h = c2. If we
write
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h = C2 sin2 X. r = R(t) sin x, (4)

we obtain Friedmann's equation, the variable radius R(t) of the map
being the so-called radius of space. Antipodal points at the boundary of
the map are supposed to represent the same real points. Then it can be
proved that if we change the center 0 of the representation the representa-
tion remains exactly the same.
The model we have described, we called the idealized model; it is per-

fectly homogeneous. If there are some fluctuations of density and velocity
round the mean value, we can continue to apply classical mechanics (with
the modified gravitational law) when we restrict ourselves to a domain
not too large in respect to the whole volume of space. Let us suppose
that the motion in the idealized model is of the ever-expanding type: a
retarded expansion passing through a minimum velocity at some time t,
when the total gravitation force vanishes, and expanding again under the
predominant effect of the cosmical repulsion, the velocity tending finally
to infinity according to the law

dr Xc4sd = r 8- .-r *-Gpo. (5)

For the perturbed motion, i.e., for a distribution of mass and initial
velocities somewhat different from the idealized model, the motion at
some places may be of a completely different type from the motion of the
idealized model. The relation between the energy-constant h and the
mass m may be such that the motion is of the collapsing type: the expan-
sion velocity vanishes when the gravitation is not yet completely balanced
by the cosmical repulsion and the expansion is followed by a contraction.
The result of the perturbations is that, after the time tI, the system in-
cludes collapsing regions, distributed in the generally expanding space.
That means that we obtain collapsing regions flying away one from another
with velocities roughly proportional to the distance.

Occasionally, we may also have equilibrium-regions. The fact that
such an equilibrium is unstable means only that it will occur relatively
rarely and that collapsing regions will be decidedly more frequent than
equilibrium-regions. Furthermore the equilibrium cannot be a detailed
equilibrium, so that an equilibrium-region must divide itself into collapsing
regions, and these collapsing regions will remain approximately at the same
distance one from another.
The hypothesis we wish to discuss is that collapsing regions must be

identified with the extra-galactic nebulae and the equilibrium-regions with
the clusters of nebulae.

This hypothesis implies that the mean density in the clusters of nebulae
must be the same for all, and furthermore must be connected with Hubble's
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ratio of distance to spectroscopic velocities by the approximate relation (5).
The epuilibrium-regions must have quite irregular forms, just as the clus-
ters of nebulae have. For spherical form, we must have the relation

Nm= CD3d3 (6)

where N is the total number of nebulae in the cluster, m the mean mass
of a nebula for which we choose as a unit 109 times the mass of the sun,
D the distance of the cluster in mega-parsecs, d the angular diameter in
degrees. The constant C depends on the velocity V in thousand km./sec.
of the nebulae at a distance of a mega-parsec by the relation

- 6.664 V2 0 5 2

8 X 6.664 X 1.983 X (0.573)3 = 0155 v(7)
In a previous paper,' I have compared the hypothesis of equilibrium

with Hubble and Humason's data on eight clusters of nebulae.2 In
Hubble's work, the frequency distribution is determined and the distance
deduced from the most frequent magnitude and checked by velocity
determinations. This comparison is reproduced with some changes,
explained later on, in table 1. Simultaneously with the publication of

TABLE 1

CLUSTER N D d m

Coma 800 19 1.7 1.1
Perseus 500 15 2.0 1.4
Leo 400 46 0.6 1.3
Urs. Maj. 300 30 0.7 0.8
Cancer 150 13 1.5 1.1
Pegasus 100 10 1 0.3

my paper quoted above, new data were published by Shapley3 concerning
25 other groups of galaxies. The luminosity curve includes only the
brightest members of the cluster and we can get an estimate of the total
population and mean magnitude by identifying Shapley luminosity curves
with the brightest part of the mean luminosity curve determined by
Hubble. This mean luminosity curve is essentially an equilateral triangle
of' basis five magnitudes. We therefore try to represent Shapley lumi-
nosity curves by a straight line a(m - b) and take as estimated population
169 a/5 and mean magnitude b + 2.5. This process gives very definite
results for nine of the Shapley groups. They are tabulated in table 2.
For nine other groups the process can be applied but with serious uncer-
tainty as the fluctuations round the straight line are fairly large (table 3).
For seven of the poorest groups the distribution has no appearance of
similitude with Hubble's frequency curve and we have been obliged to
neglect them. We have included under n the observed number of nebulae
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in Shapley's restricted area and taken for d the angular diameter corre-
sponding to his sin 0. In the computation of both Hubble's and Shapley's
data, we have used, following Shapley and Knox Shaw,3 - 14.5 as mean
photographic magnitude of a nebula and 405 km./sec. for the spectro-
scopic velocity at a megaparsec.

Except for a systematic difference between Hubble's and Shapley's
data, the constancy of the computed m is very remarkable. This sys-
tematic difference corresponds to a change of 0.8 in the system of magni-
tude. This is what we may expect as Hubble and Shapley find, respec-
tively, 13 and 14 as the most frequent magnitude of the Virgo cluster.

TABLE 2

GROUP n N D d m

14 370 3800 46 1.57 2.0
20 341 1500 46 1.50 5.6
8 317 2700 44 1.67 3.7
15 256 3200 50 1.23 1.8
17 157 940 55 1.00 4.4
13 150 1300 46 1.17 2.9
3 77 270 44 0.67 2.4
25 56 340 63 0.53 2.8
4 46 340 50 0.67 2.7

TABLE 3

GROUP n N D d m

16 90 340 44 0.87 4.1
2 88 170 30 1.00 4.0

23 82 300 44 1.00 7.1
21 66 240 44 0.60 1.9
10 58 170 36 0.83 4.0
22 58 300 44 0.50 8.8
5 56 90 27 0.50 0.7

42 150 33 0.50 7.7
11 45 150 45 0.60 3.3

We therefore find from the value of the red-shift and data on the clusters
a mean mass of a nebula of one or three 109 suns. This is the order of
magnitude that was deduced by Hubble from the rotation and absolute
magnitude of some bright nebulae.4

It might be noticed that our determination includes obscure matter.
We can therefore conclude that, if our hypothesis can be accepted, the
uncertainty factor of 100 or 1000 which is generally ascribed to Hubble's
determination of the mean mass of a nebula must be considered as greatly
exaggerated.
We have seen that our identification of the clusters of nebulae with

equilibrium-regions is substantiated by observation. We must now
inquire under what conditions we can identify the nebulae themselves
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with the collapsing regions. A nebula of 109 suns comes out of a col-
lapsing region of initial volume corresponding to a radius r, given by

47r
3por<3= m (8)

that is, about 100,000 light years. For the radius of a normal nebula,
we can take 1000 light years. This difference accounts for the degree
of concentration observed in the nebulae. But what happens to the
gravitational energy due to the contraction?

If, for definiteness, we consider the distribution of matter in a nebula
as a polytrop of index 3, this energy is

3 N2m2
-G
2 R (9)

where R is the radius of the nebula and N the number of stars of mass m.
For comparison the gravitational energy of one star is

3 m2
-G
2 r (10)

where r is the radius of the star. Therefore the loss of energy is Nr/R
times the gravitational energy of the stars. For N = 109, r = 6 X 1010 cm.
(radius of the sun) and R = 1000 light years = 1021 cm. we find that we
have to account for a loss of energy of the order of 6 per cent of the gravi-
tational energy of the stars in the nebula. If the stars existed as stars
before the critical instant when the collapse began, there would be no
way to account for such a loss of energy. But, if before the critical instant
matter is formed of gas, dust or meteorites of comparatively small free
path, the collapse will produce a number of non-elastic collisions, turning
out gravitational energy into heat, and agglomerating the diffuse matter
.into large hot masses, i.e., into stars.
We are therefore led to the conclusion that, in the frame of our hypothe-

sis, the same mechanism which provides the formation of the nebulae,
provides also the formation of the stars. Stars and nebulae are formed
by the same process, and there is no star which is not associated with a
nebula.
Another consequence is that obviously the total volume of the expanding

and of the collapsing or equilibrium regions at the critical instant cannot
be of different order of magnitude. It follows that the total mass of
obscure matter in inter-nebular space is of the same order of magnitude as
the total mass agglomerated into nebulae, i.e., 10-30 gr./cm.3
The difference of types of the nebulae may be accounted for as a differ-

ence of the total angular momentum of the corresponding collapsing
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regions. Finally, we must expect the occurrence of an intermediary type
between the collapsing regions and the equilibrium regions. There must
exist slowly collapsing regions containing a number of rapidly collapsing
regions, and this could be identified with our galaxy.
We may expect to get a complete theory of all the problems connected

with extra-galactic nebulae by applying statistical mechanics to small
inhomogeneity in our idealized model. Such an investigation would
probably involve only two parameters; one to fix the mean velocity of
expansion at the instant of equilibrium, a second one to define the dis-
persion of the distribution of matter from the idealized model.

1 Ann. Socie'te Scientifigue Bruxelles, S&rie A 53, p. 51-85 (1933). C. R. Paris, March
24 and April 10 (1933).

2 Mt. Wilson Contribution No. 427.
3Proc. Nat. Acad. Sci., 19, 591-596 (1933).
" Mt. Wilson Contribution No. 324.
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1. During the last four years a theoretical and experimental study
of the stresses in longitudinal welds has been carried out at the Massachu-
setts Institute of Technology. The early part of this work has already
been reported in these PROCEEDINGS, 16, pp. 667-678 (1930) and 17,
pp. 351-359 (1931); the later part consists of three theses and a great
amount of further study. The research had for its main object the
determination of the stresses in a longitudinal weld as well as in the ad-
joining structural members, and centered in the simple and fundamental
case where a long rectangular plate, subject to a lengthwise pull, is re-
enforced by a double flat bar or web connected to it by four fillet welds.

2. The problem was first attacked by the author, as described in the
papers referred to above, by assuming that the shearing stress at any
point in the weld is proportional to the average displacement of the bar
relative to the plate across a transverse section through that point. Ex-
pressed in symbols:

qx= U(1)

where qx is the shearing stress on the throat area of the weld. Ux is the
relative displacement and ,u is a coefficient, hereafter referred to as the
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